The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

2008 Geology Symposium May 28-29, 2008

Charles Brush

Hydrology & Operations, Bay-Delta Office California Department of Water Resources Sacramento, CA

Acknowledgements

Tariq Kadir, Can Dogrul, Francis Chung Michael Moncrief and Jeff Galef California Department of Water Resources

Steve Shultz and Dan Wendell CH₂MHill

Matt Tonkin
SS Papadopolous & Associates

Outline

- Development of California's Central Valley
- Modeling Tools: IWFM and C2VSIM
- Overview of the C2VSIM model
- Model Calibration and Performance
- In-Lieu Conjunctive Use Scenario
- Climate Change Scenarios
- Summary

Historical Central Valley Land Use

Central Valley Water Development

1850 - 1900 Introduction of agriculture

1890 - 1930 Local surface water projects

Ag expansion, re-purpose mining canals

1910 - 1970 Groundwater expansion

Ag follows electricity & population

1930 - 1980 Large surface water projects

Switch to surface water

Distribution system is completed

• 1980 - present Conjunctive use

1960 - 1990

Groundwater in dry years

Components of the Hydrologic System

Groundwater Model Components

Integrated Model Components

IWFM - Integrated Water Flow Model

- Components
 - Groundwater Flow Process
 - Finite Element Grid
 - Saturated and unsaturated flow
 - Land Surface Process
 - Precipitation and Evapotranspiration
 - Land Type and Crop Acreages
 - Irrigation with Surface Water & Groundwater
 - Surface Water Processes
 - Streamflow routing
 - Lakes
 - Surface Water Diversions
 - Inflows from Ungaged Boundary Watersheds
- Outputs:
 - Water Budget Components
 - Estimated Groundwater Pumping

Groundwater Model Components

Component Source
Parameters calibration: WY 1973-2003

Initial conditions water-level observations, 10/1921 or 10/1972

Boundary conditions - Precipitation & evapotranspiration - Surface water inflows & diversions

Recharge & Pumping calc - Land use & crop acreages
- Crop coefficients
- Soil type, SCS curve number
- Pump locations (well database)

C2VSIM Model Grid

Finite Element Grid

- 3 layers
- 1393 nodes
- 1392 elements

Surface Water System

- 75 river reaches
- 2 lakes
- 97 surface water diversion points
- 6 bypasses

Land Use Process

- 21 subregions
- 4 Land Use Types
 - Agriculture
 - Urban
 - **Native**
 - Riparian

Simulation periods

- 10/1921-9/2003
- 10/1972-9/2003 (<4 min)

C2VSIM Subregions

Water Budget Calculations

- Land use by element
- Aggregate to subregion

By land use in subregion:

- Calculate water demands
- Apply soil moisture
- Apply surface water diversions
- Apply/estimate groundwater pumping
- Calculate soil moisture, recharge, return flows

Allocate to elements by land use areas

Changes Since Initial Calibration R305 of July 2006 to R323 of May 2008

- Model-wide changes
 - IWFM 2.4.1 to IWFM 3.0 (time tracking)
 - Elemental monthly precipitation from PRISM
 - Pumping distribution matches well completion database
 - Map-based small-stream watersheds with SSURGO parameters
- Sacramento-San Joaquin Delta
 - Constant-head groundwater nodes to variable-head nodes
 - Extended river system to Carquinez Straits
 - Variable-stage river node rating curves
- Tulare Basin
 - Removed external flow of lake water
 - Added Kern River Flood Channel, Tulare Lake outflow

Recent changes to the Tulare Basin hydrology will require some additional calibration of parameters in Kern County (SR 19-21)

Examples of Elemental Data

Annual Average Precipitation (1971-2000)

Hydrologic Soil Group

C2VSIM Land Use 2003

C2VSIM Diversions

C2VSIM Groundwater Pumping

C2VSIM Initial Calibration

140 in layers 1 & 2

Pilot Points
39 in layer 3

19 for Corcoran Clay

C2VSIM Initial Calibration

Observations

221 groundwater head9 head gradient

9 river flow34 stream-groundwater

Hydraulic Conductivity

Specific Yield & Kv of Corcoran Clay

Streambed Conductance

C2VSIM Performance – Heads R305 – Initial Calibration

C2VSIM Performance - Flows

C2VSIM Performance – RMSE and BIAS

Groundwater Pumping

Stream-Aquifer Interaction

Change in Groundwater Storage

Simulated Water Budget Components

Average Annual Rates for Water Years 1975-2003

	Storage	Stream Leakage	Subsidence	Pumpage	Recharge	Interbasin Flows
Sacramento Valley	200,174	-350,859	51	-2,089,333	2,225,060	14,908
Delta	-82,464	-30,188	-105	-204,022	430,915	-114,136
Eastside Streams	139,029	109,888	50	-771,925	308,327	214,631
San Joaquin Basin	150,969	-499,100	798	-1,414,172	1,935,691	-174,196
Tulare Basin	-2,109,300	-485,561	-9,533	-3,807,986	6,350,697	58,794
Model Area	-1,701,592	-1,255,821	-8,739	-8,287,438	11,250,690	0

Simulated Water Budget Components

Average Annual Rates for Water Years 1975-2003

	Surface Water Inflows*	Surface Water Outflows*	Precipitation	Actual Evapo- transpiration
Sacramento Valley	19,955,538	17,759,801	6,849,346	8,472,276
Delta	31,005,209	25,564,486	926,265	1,533,207
Eastside Streams	1,307,325	1,443,871	1,405,900	1,683,961
San Joaquin Basin	5,820,154	4,535,437	2,521,049	5,544,759
Tulare Basin	3,220,309	1,179,001	3,584,871	10,596,423
Model Area	30,923,480	26,783,332	15,287,431	27,830,625

^{*} Surface water inflows and outflows do not add up across hydrologic regions

Water Budget

Analyze a Conjunctive Use Scenario (In-Lieu Pumping)

Proposed Participants

- 29 Districts
- 293 wells
- 187,633 AF/year

Operate "non-wet" years

1973 1 yr

• 1976-81 6 yrs

• 1985 1 yr

• 1987-94 8 yrs

• 2000-03 4 yrs

Sacramento River Index

Water	WY Index		Project	Water	WY Index		Project
Year	Index	Yr-type	Operation	Year	Index	Yr-type	Operation
1972	7.29	BN	-	1988	4.65	С	ON
1973	8.58	AN	ON	1989	6.13	D	ON
1974	12.99	W	OFF	1990	4.81	С	ON
1975	9.35	W	OFF	1991	4.21	С	ON
1976	5.29	С	ON	1992	4.06	С	ON
1977	3.11	С	ON	1993	8.54	AN	ON
1978	8.65	AN	ON	1994	5.02	С	ON
1979	6.67	BN	ON	1995	12.89	W	OFF
1980	9.04	AN	ON	1996	10.26	W	OFF
1981	6.21	D	ON	1997	10.82	W	OFF
1982	12.76	W	OFF	1998	13.31	W	OFF
1983	15.29	W	OFF	1999	9.8	W	OFF
1984	10	W	OFF	2000	8.94	AN	ON
1985	6.47	D	ON	2001	5.76	D	ON
1986	9.96	W	OFF	2002	6.35	D	ON
1987	5.86	D	ON	2003	8.21	AN	ON

C2VSIM Simulation of a Proposed In-Lieu Groundwater Pumping Program

- Identify individual wells and pumping rates
- Prepare IWFM input files
 - October 1972 through September 2003
 - Pumps on in non-wet years
- C2VSIM runs
 - 1. Turn on groundwater adjustment
 - 2. Turn on surface water adjustment
 - 3. Turn on SVWMP wells & reduce diversions in non-wet years (Sacramento River Index)

Change in River Flow

Summer Flow Increase at Freeport vs. Years of Sequential Operation

Scenario vs. Base Case, Sacramento River at Freeport

C2VSIM Simulation of Reduced Surface Water Availability Scenarios

Joint LBNL-DWR Project

- Simulate 30%, 50% and 70% reduction for 10, 20, 30 and 60 years
 - October 2003 as initial condition
 - 10-yr run-up, drought period, 10-yr recovery
- Climate model results to Calsim for rim inflows
 - Prepare C2VSIM inflow & diversion files
- C2VSIM runs
 - 1. Turn on groundwater adjustment
 - 2. Post-process results

Central Valley Water Table 'Relative' Response

Joint LBNL-DWR Drought Simulation

30-percent reduction in surface water inflows

"Drought Resilience Of The California Central Valley Surface-Groundwater-Conveyance System" by N. L. Miller et al. Submitted to <u>J. Am. Water Res. Assoc</u>. April 2008.

Central Valley Water Table 'Relative' Response

Joint LBNL-DWR Drought Simulation

70-percent reduction in surface water inflows

"Drought Resilience Of The California Central Valley Surface-Groundwater-Conveyance System" by N. L. Miller et al. Submitted to <u>J. Am. Water Res. Assoc</u>. April 2008.

Summary

- C2VSIM model performs well
 - Regional parameters provide good results
 - Lots of information areal recharge, storage, GW-SW
 - Groundwater pumping estimates look reasonable
 - Subregional 'virtual farms' limit spatial resolution
- Model improvements
 - Need to refine parameters for Kern County
 - Further spatial refinement of parameters (pilot points)
 - Increase calibration data set (observations)
 - especially vertical head gradients and stream-groundwater flow
 - Review selected water budget components:
 - Aquifer storage and recovery programs (direct recharge & pumping)
 - Groundwater exports
 - High wet-season diversions (refuges?)
 - Check crop ET values
 - Verify simulated runoff

